K-tuple Domination in Graphs
نویسندگان
چکیده
In a graph G, a vertex is said to dominate itself and all of its neighbors. For a fixed positive integer k, the k-tuple domination problem is to find a minimum sized vertex subset in a graph such that every vertex in the graph is dominated by at least k vertices in this set. The current paper studies k-tuple domination in graphs from an algorithmic point of view. In particular, we give a linear-time algorithm for the k-tuple domination problem in strongly chordal graphs, which is a subclass of chordal graphs and includes trees, block graphs, interval graphs and directed path graphs. We also prove that the k-tuple domination problem is NP-complete for split graphs (a subclass of chordal graphs) and for bipartite graphs. 2003 Elsevier Science B.V. All rights reserved.
منابع مشابه
$k$-tuple total restrained domination/domatic in graphs
For any integer $kgeq 1$, a set $S$ of vertices in a graph $G=(V,E)$ is a $k$-tuple total dominating set of $G$ if any vertex of $G$ is adjacent to at least $k$ vertices in $S$, and any vertex of $V-S$ is adjacent to at least $k$ vertices in $V-S$. The minimum number of vertices of such a set in $G$ we call the $k$-tuple total restrained domination number of $G$. The maximum num...
متن کاملk-TUPLE DOMATIC IN GRAPHS
For every positive integer k, a set S of vertices in a graph G = (V;E) is a k- tuple dominating set of G if every vertex of V -S is adjacent to at least k vertices and every vertex of S is adjacent to at least k - 1 vertices in S. The minimum cardinality of a k-tuple dominating set of G is the k-tuple domination number of G. When k = 1, a k-tuple domination number is the well-studied domination...
متن کاملRoman k-Tuple Domination in Graphs
For any integer $kgeq 1$ and any graph $G=(V,E)$ with minimum degree at least $k-1$, we define a function $f:Vrightarrow {0,1,2}$ as a Roman $k$-tuple dominating function on $G$ if for any vertex $v$ with $f(v)=0$ there exist at least $k$ and for any vertex $v$ with $f(v)neq 0$ at least $k-1$ vertices in its neighborhood with $f(w)=2$. The minimum weight of a Roman $k$-tuple dominatin...
متن کاملThe 2-Tuple Domination Problem on Trapezoid Graphs
Given a simple graph G = (V, E) and a fixed positive integer k. In a graph G, a vertex is said to dominate itself and all of its neighbors. A set D ⊆ V is called a k-tuple dominating set if every vertex in V is dominated by at least k vertices of D. The k-tuple domination problem is to find a minimum cardinality k-tuple dominating set. This problem is NP-complete for general graphs. In this pap...
متن کاملOn the algorithmic complexity of k-tuple total domination
For a fixed positive integer k, a k-tuple total dominating set of a graph G is a subset D ⊆ V (G) such that every vertex of G is adjacent to at least k vertices in D. The k-tuple total domination problem is to determine a minimum k-tuple total dominating set of G. This paper studies k-tuple total domination from an algorithmic point of view. In particular, we present a linear-time algorithm for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Process. Lett.
دوره 87 شماره
صفحات -
تاریخ انتشار 2003